Largest Production Deployment of 
AI & IoT Applications
  • Case Study

Largest Production Deployment of 
AI & IoT Applications

enel has largest production deployment of AI & IoT across electric grid

Project Challenge

To increase efficiency, develop new services, and spread a digital culture across the organization, Enel is executing an enterprise-wide digitalization strategy. Central to achieving the Fortune 100 company’s goals is the large-scale deployment of the C3 IoT Platform and applications. Enel operates the world’s largest enterprise IoT system with 20 million smart meters across Italy and Spain.

Results

4

Production Applications Deployed at Scale

50M+

Sensors Monitored

€200M+

Annual Recurring Economic Value

€6.72B

Potential Per Year In Economic Benefit Once Fully Implemented

Fabio Veronese
Head of IT Ops & Distribution Development, Enel

Talking about digitalization, new technology, the move to the cloud, and the adoption of platforms, our experience with C3 IoT has been a wonderful example.”

Project Highlights

5+

Year Strategic Partnership

25+

Data Sources

50TB

Unified Federated Cloud Image

10M

Node In-memory Graph Network

Enterprise Digital Transformation

Enel and C3 IoT have been working together since 2013. Two of Enel’s enterprise-wide digital transformation efforts with C3 IoT are fraud detection and predictive maintenance of distribution assets.

With C3 IoT, Enel transformed its approach to identifying and prioritizing electricity theft (non-technical loss), with a goal to double the recovery of unbilled energy while improving productivity. The effort required building AI/machine learning algorithms to match the performance delivered by Enel experts using a process honed over 30 years of experience.

To accomplish this, the teams worked together to replace traditional non-technical loss identification processes with the C3 IoT Fraud Detection application. The new application uses advanced AI capabilities to prioritize potential cases of non-technical loss at service points, based on a blend of the magnitude of energy recovery and likelihood of fraud.

The system integrates and correlates 10 trillion rows of data from seven Enel source systems and 22 data integrations into a unified, federated cloud image in near real-time, running on Amazon Web Services. Using analytics and more than 500 advanced machine learning features, C3 Fraud Detection continuously updates probability of fraud for each customer meter.

To improve grid reliability and reduce the occurrence of faults, Enel deployed the C3 Predictive Maintenance application for 5 control centers. The application uses AI to analyze real-time network sensor data, smart meter data, asset maintenance records, and weather data to predict feeder failure.

The system provides a holistic view of Enel’s operating assets by integrating data from 8 disparate systems (SCADA, Grid Topology, Weather, Power Quality, Maintenance, Workforce, Work Management, and Inventory) and presenting relevant, actionable insights. Key innovations in this project include a time-based view of Enel’s as-operated network state using an advanced graph network approach, and the use of an advanced machine learning framework that continuously learns to improve prediction performance.

Solution Architecture

Enel Platform Architecture

Project Timeline

Enel Project Timeline

Previous Case Study

Fortune 200 Manufacturing: Optimize Inventory Levels for a $30B Global Discrete Manufacturer

Next Case Study

ENGIE: Global 100 
Enterprise-Wide Digital Transformation